MACHINE LEARNING/HUGGING FACE

Hugging Face / NLP Preprocess (전처리) 튜토리얼 (Pytorch)

24_bean 2022. 8. 5. 23:43

Preprocess

모델에 데이터를 직접 사용하기 전 우리는 전처리가 필요합니다.

해당 데이터들은 numbers 혹은 tensor로 assembled된 형식 등 이어야 합니다.


Tokenize

 

pretrained tokenizer를 불러옵니다

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
encoded_input = tokenizer("Do not meddle in the affairs of wizards, for they are subtle and quick to anger.")
print(encoded_input)


"""output
{'input_ids': [101, 2079, 2025, 19960, 10362, 1999, 1996, 3821, 1997, 16657, 1010, 2005, 2027, 2024, 11259, 1998, 4248, 2000, 4963, 1012, 102], 
 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 
 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
"""

encoded_input에 저장된 tokenizing된 값의 key들은 다음을 의미합니다.

 

 * input_ids : 문장의 각 토큰에 해당하는 인덱스

 * token_type_ids : 둘 이상의 시퀀스가 있을 때 토큰이 속하는 시퀀스를 식별

 * attention_mask : attention 해야하는 지를 식별

 

다음과 같이 반대로 decoding도 할 수 있습니다.

tokenizer.decode(encoded_input["input_ids"])


"""output
'[CLS] Do not meddle in the affairs of wizards, for they are subtle and quick to anger. [SEP]'
"""

 * CLS : Classifer

 * SEP : Seperator


Pad

Padding은 token 수가 적은 문장에 특별한 padding token을 추가해 tensor가 직사각형으로 되도록 하는 전략입니다.

(tensor가 uniform한 형태로 model에 들어가야만 하기 때문에 문장의 길이에 따라 문제가 생길 수도 있습니다.)

batch_sentences = [
    "But what about second breakfast?",
    "Don't think he knows about second breakfast, Pip.",
    "What about elevensies?",
]
encoded_input = tokenizer(batch_sentences, padding=True)
print(encoded_input)


"""output
{'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0], 
               [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], 
               [101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]], 
 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 
                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 
                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 
 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], 
                    [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 
                    [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]}
"""

Truncation

때때로 시퀀스는 모델이 처리하기에 너무 길 수 있습니다. 이 경우 시퀀스를 더 짧은 길이로 잘라야(truncate) 합니다.

batch_sentences = [
    "But what about second breakfast?",
    "Don't think he knows about second breakfast, Pip.",
    "What about elevensies?",
]
encoded_input = tokenizer(batch_sentences, padding=True, truncation=True)
print(encoded_input)

"""output
{'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0], 
               [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], 
               [101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]], 
 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 
                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 
                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 
 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], 
                    [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 
                    [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]}
"""

tensor로 변환

batch_sentences = [
    "But what about second breakfast?",
    "Don't think he knows about second breakfast, Pip.",
    "What about elevensies?",
]
encoded_input = tokenizer(batch_sentences, padding=True, truncation=True, return_tensors="pt")
print(encoded_input)


"""output
{'input_ids': tensor([[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
                      [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
                      [101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]]), 
 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                           [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                           [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]), 
 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
                           [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
                           [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]])}
"""

 


Reference : https://huggingface.co/docs/transformers/preprocessing, https://pytorch.org/tutorials/beginner/text_sentiment_ngrams_tutorial.html

반응형