MACHINE LEARNING

Wandb / Quick Start ํ๋ฆ„

24_bean 2022. 8. 6. 16:35

Weights & Biases is the machine learning platform for developers to build better models faster


๐Ÿ”ฅ Simple Pytorch Neural Network

import random

# Launch 5 simulated experiments
total_runs = 5
for run in range(total_runs):
  **# ๐Ÿ 1๏ธโƒฃ Start a new run to track this script**
  wandb.init(
      # Set the project where this run will be logged
      project="basic-intro", 
      # We pass a run name (otherwise it’ll be randomly assigned, like sunshine-lollypop-10)
      name=f"experiment_{run}", 
      # Track hyperparameters and run metadata
      config={
      "learning_rate": 0.02,
      "architecture": "CNN",
      "dataset": "CIFAR-100",
      "epochs": 10,
      })
  
  # This simple block simulates a training loop logging metrics
  epochs = 10
  offset = random.random() / 5
  for epoch in range(2, epochs):
      acc = 1 - 2 ** -epoch - random.random() / epoch - offset
      loss = 2 ** -epoch + random.random() / epoch + offset
      
      # ๐Ÿ 2๏ธโƒฃ **Log metrics from your script to W&B**
      wandb.log({"acc": acc, "loss": loss})
      
  # Mark the run as finished
  wandb.finish()


Train Your Model

**# Launch 5 experiments, trying different dropout rates**
for _ in range(5):
    # ๐Ÿ initialise a wandb run
    wandb.init(
        project="pytorch-intro",
        config={
            "epochs": 10,
            "batch_size": 128,
            "lr": 1e-3,
            "dropout": **random.uniform(0.01, 0.80),**
            })
    
    # Copy your config 
    config = wandb.config

    # Get the data
    train_dl = get_dataloader(is_train=True, batch_size=config.batch_size)
    valid_dl = get_dataloader(is_train=False, batch_size=2*config.batch_size)
    n_steps_per_epoch = math.ceil(len(train_dl.dataset) / config.batch_size)
    
    # A simple MLP model
    model = get_model(config.dropout)

    # Make the loss and optimizer
    loss_func = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=config.lr)

   # Training
    example_ct = 0
    step_ct = 0
    for epoch in range(config.epochs):
        model.train()
        for step, (images, labels) in enumerate(train_dl):
            images, labels = images.to(device), labels.to(device)

            outputs = model(images)
            train_loss = loss_func(outputs, labels)
            optimizer.zero_grad()
            train_loss.backward()
            optimizer.step()
            
            example_ct += len(images)
            metrics = {"train/train_loss": train_loss, 
                       "train/epoch": (step + 1 + (n_steps_per_epoch * epoch)) / n_steps_per_epoch, 
                       "train/example_ct": example_ct}
            
            if step + 1 < n_steps_per_epoch:
                **# ๐Ÿ Log train metrics to wandb** 
                wandb.log(metrics)
                
            step_ct += 1

        val_loss, accuracy = validate_model(model, valid_dl, loss_func, log_images=(epoch==(config.epochs-1)))

        **# ๐Ÿ Log train and validation metrics to wandb**
        val_metrics = {"val/val_loss": val_loss, 
                       "val/val_accuracy": accuracy}
        wandb.log({**metrics, **val_metrics})
        
        print(f"Train Loss: {train_loss:.3f}, Valid Loss: {val_loss:3f}, Accuracy: {accuracy:.2f}")

    # If you had a test set, this is how you could log it as a Summary metric
    wandb.summary['test_accuracy'] = 0.8

    # ๐Ÿ Close your wandb run 
    wandb.finish()


W&B Alerts

# Start a wandb run
wandb.init(project="pytorch-intro")

# Simulating a model training loop
acc_threshold = 0.3
for training_step in range(1000):

    # Generate a random number for accuracy
    accuracy = round(random.random() + random.random(), 3)
    print(f'Accuracy is: {accuracy}, {acc_threshold}')
    
    # ๐Ÿ Log accuracy to wandb
    wandb.log({"Accuracy": accuracy})

    # ๐Ÿ”” If the accuracy is below **the threshold**, fire a W&B Alert and stop the run
    if accuracy <= acc_threshold:
        # ๐Ÿ **Send the wandb Alert**
        wandb.alert(
            title='Low Accuracy',
            text=f'Accuracy {accuracy} at step {training_step} is below the acceptable theshold, {acc_threshold}',
        )
        print('Alert triggered')
        break

# Mark the run as finished (useful in Jupyter notebooks)
wandb.finish()


Hyperparameter Sweeps using W&B

# dictionary ํ˜•์‹์œผ๋กœ ์ž…๋ ฅ
sweep_config = {
    'method': 'random'
    }
import pprint

pprint.pprint(sweep_config)
# output of sweep_config
{'method': 'random',
 'metric': {'goal': 'minimize', 'name': 'loss'},
 'parameters': {'batch_size': {'distribution': 'q_log_uniform_values',
                               'max': 256,
                               'min': 32,
                               'q': 8},
                'dropout': {'values': [0.3, 0.4, 0.5]},
                'epochs': {'value': 1},
                'fc_layer_size': {'values': [128, 256, 512]},
                'learning_rate': {'distribution': 'uniform',
                                  'max': 0.1,
                                  'min': 0},
                'optimizer': {'values': ['adam', 'sgd']}}}

Initialize the Sweep

sweep_id = wandb.sweep(sweep_config, project="pytorch-sweeps-demo")


Run the Sweep agent

import torch
import torch.optim as optim
import torch.nn.functional as F
import torch.nn as nn
from torchvision import datasets, transforms

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

def train(config=None):
    # Initialize a new wandb run
    with wandb.init(config=config):
        # If called by wandb.agent, as below,
        # this config will be set by Sweep Controller
        config = wandb.config

        loader = build_dataset(config.batch_size)
        network = build_network(config.fc_layer_size, config.dropout)
        optimizer = build_optimizer(network, config.optimizer, config.learning_rate)

        for epoch in range(config.epochs):
            avg_loss = train_epoch(network, loader, optimizer)
            wandb.log({"loss": avg_loss, "epoch": epoch})

def build_dataset(batch_size):
   
    transform = transforms.Compose(
        [transforms.ToTensor(),
         transforms.Normalize((0.1307,), (0.3081,))])
    # download MNIST training dataset
    dataset = datasets.MNIST(".", train=True, download=True,
                             transform=transform)
    sub_dataset = torch.utils.data.Subset(
        dataset, indices=range(0, len(dataset), 5))
    loader = torch.utils.data.DataLoader(sub_dataset, batch_size=batch_size)

    return loader

def build_network(fc_layer_size, dropout):
    network = nn.Sequential(  # fully-connected, single hidden layer
        nn.Flatten(),
        nn.Linear(784, fc_layer_size), nn.ReLU(),
        nn.Dropout(dropout),
        nn.Linear(fc_layer_size, 10),
        nn.LogSoftmax(dim=1))

    return network.to(device)
        

def build_optimizer(network, optimizer, learning_rate):
    if optimizer == "sgd":
        optimizer = optim.SGD(network.parameters(),
                              lr=learning_rate, momentum=0.9)
    elif optimizer == "adam":
        optimizer = optim.Adam(network.parameters(),
                               lr=learning_rate)
    return optimizer

def train_epoch(network, loader, optimizer):
    cumu_loss = 0
    for _, (data, target) in enumerate(loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()

        # โžก Forward pass
        loss = F.nll_loss(network(data), target)
        cumu_loss += loss.item()

        # โฌ… Backward pass + weight update
        loss.backward()
        optimizer.step()

        wandb.log({"batch loss": loss.item()})

    return cumu_loss / len(loader)
wandb.agent(sweep_id, train, count=5)


Reference : https://wandb.ai/site

๋ฐ˜์‘ํ˜•